

MNA-Konzepte für Teerölaltlasten – drei Fallbeispiele aus NRW

Gliederung des Vortrags

- 1. Einleitung: LABO-Anforderungen an MNA-Konzepte
- 2. Fallbeispiele
 - a. Ehemaliges Gaswerk der Stadt Detmold: Redoxzonierung, Isotopenuntersuchung, "PAK-Durchbrüche"
 - b. Ehemalige Zeche und Kokerei Massen III/IV in Unna:
 - Schadstoffabnahme entlang von Stromlinien, mehrere getrennte Teerölphasenkörper
 - c. Ehemalige Zeche und Kokerei Prosper I in Bottrop:
 - Schadstoffabnahme entlang von Stromlinien, punktuelle Bodenbelastungen im Abstrom, jahreszeitlich schwankende Elektronenakzeptor-Konzentrationen
- 3. Schlussfolgerungen zur Anwendung von MNA bei Teerölaltlasten

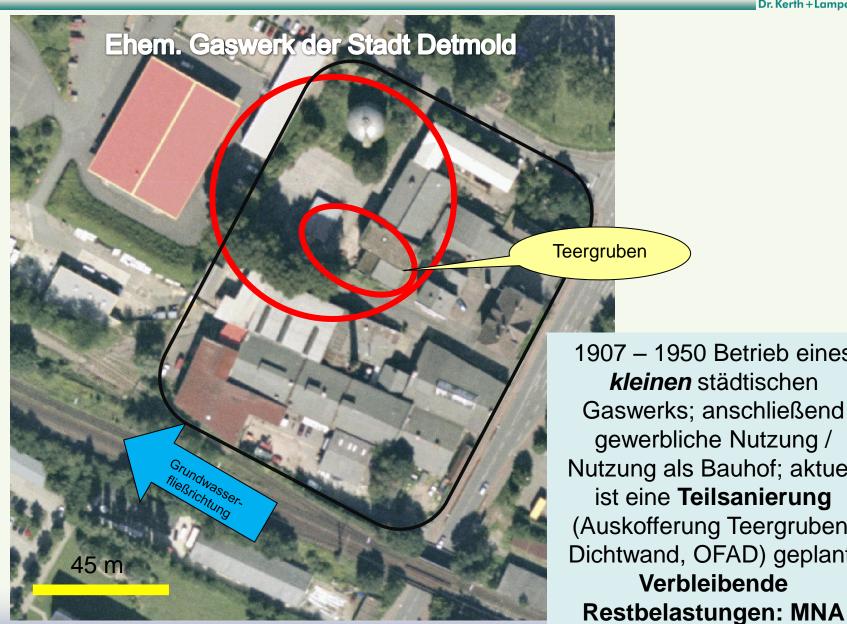
Einleitung (1)

Im LABO-Positionspapier "Berücksichtigung natürlicher Schadstoffminderungsprozesse bei der Altlastenbearbeitung" werden umfassende Anforderungen an MNA-Konzepte gestellt, und zwar insbesondere an die

- Charakterisierung und den Umgang mit der Schadstoffquelle,
- die Betrachtung der Schadstofffahne.
- die Bewertung der Schadstofffahne und die Prognose des Fahnenverhaltens,
- den Schutz des nicht beeinträchtigten Grundwassers und Berücksichtigung weiterer Schutzgüter.

Einleitung (2)

Bei der Bearbeitung von MNA-Konzepten sind die LABO-Anforderungen entsprechend zu berücksichtigen. Daraus resultiert, dass zunächst

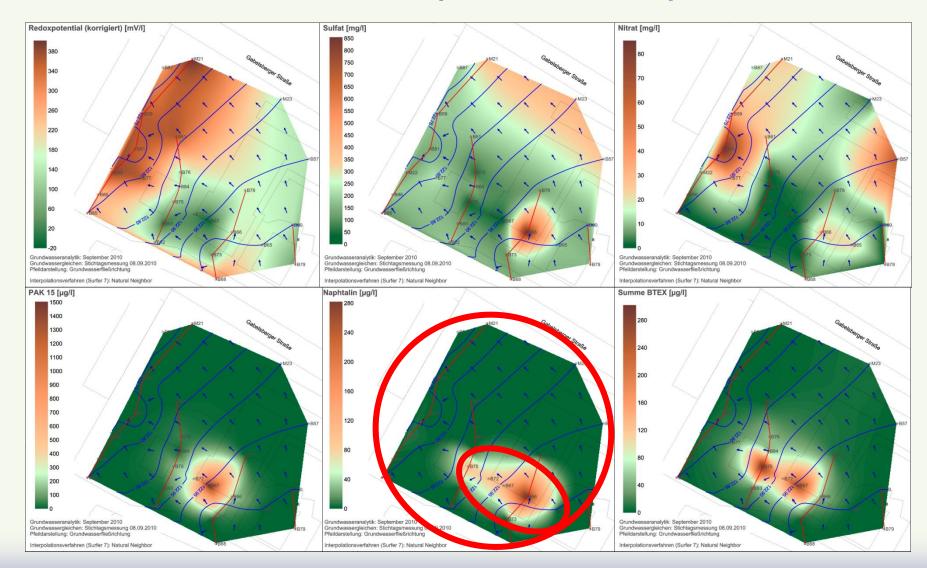

- die hydrogeologischen und hydrochemischen Verhältnisse am Standort selbst und seinem Umfeld sowie
- die Schadstoffverteilung im Untergrund erkundet werden müssen.

Darauf aufbauend ist

- ein hydrogeologisches Modell,
- ein Schadstoffverteilungs-Modell und
- ein Modell der ablaufenden Schadstoffabbau-Prozesse zu entwickeln und hierauf basierend eine (Langzeit-) Prognose zu erstellen.

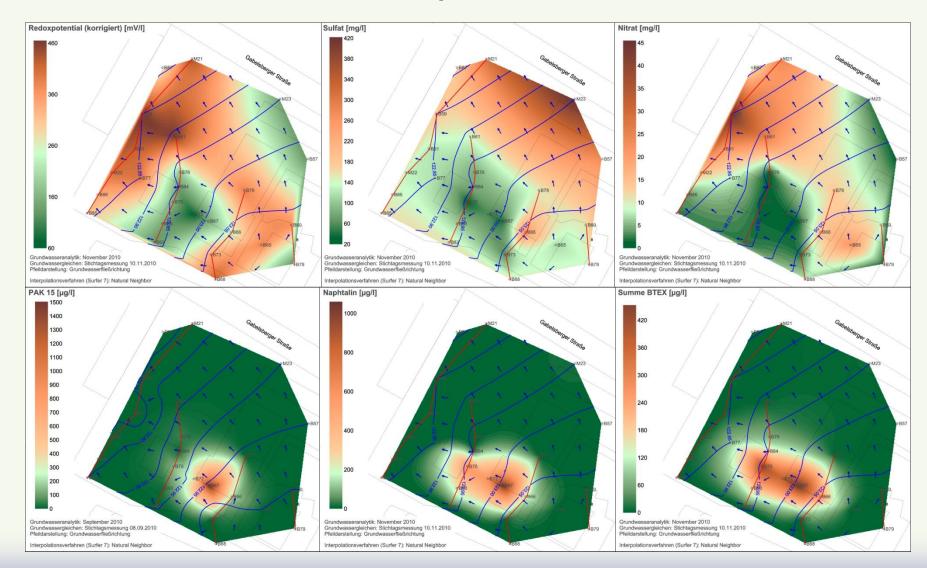
Aspekte dieser grundsätzlichen Vorgehensweise sollen nachfolgend an den Fallbeispielen dargestellt werden.

1907 – 1950 Betrieb eines **kleinen** städtischen Gaswerks; anschließend gewerbliche Nutzung / Nutzung als Bauhof; aktuell ist eine Teilsanierung (Auskofferung Teergruben, Dichtwand, OFAD) geplant. Verbleibende

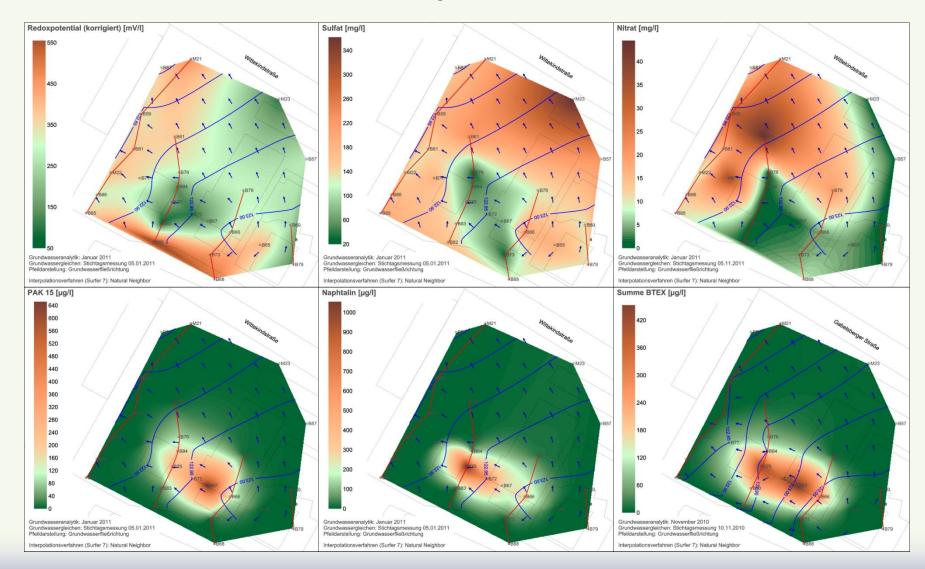

Untergrundaufbau

bis ca. 1 m GOK (max. 2,2 m): Unterhalb des Apparatehauses fehlt die Auffüllung.	Auffüllung: Mineralisches Gemisch aus Schluff, Sand und Kies, untergeordnet Ton, mit wechselnden Anteilen an Gesteins- und Ziegelbruch, gering Asche.
bis ca. 1,5 m u. GOK: (stellenweise fehlend)	Auenlehm: Schluff, tonig, schwach sandig
bis ca. 2,0 m u. GOK: (stellenweise fehlend)	Auensand: Sand, schwach schluffig
bis ca. 8 m u. GOK:	Niederterrasse: Kies und Sand, schwach schluffig; an der Basis stark steinig
	Mittlere k _f -Werte aus Pumpversuch und Slug-/Bailtests um 4,5 * 10 ⁻⁵ m/s
ab ca. 8 m u. GOK:	Mittlerer Keuper: Ton- bis Mergelstein

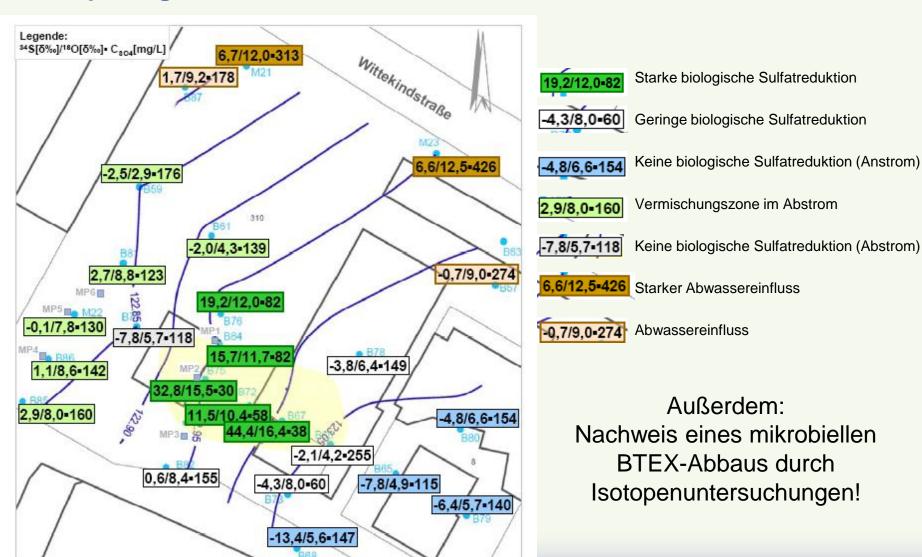
GW-Flurabstand: 2,5 – 4,0 m <u>Mittlere</u> Abstandsgeschwindigkeit: 26 m/a


Redox, Sulfat, Nitrat, PAK15, Naphthalin, BTEX September 2010

45 m

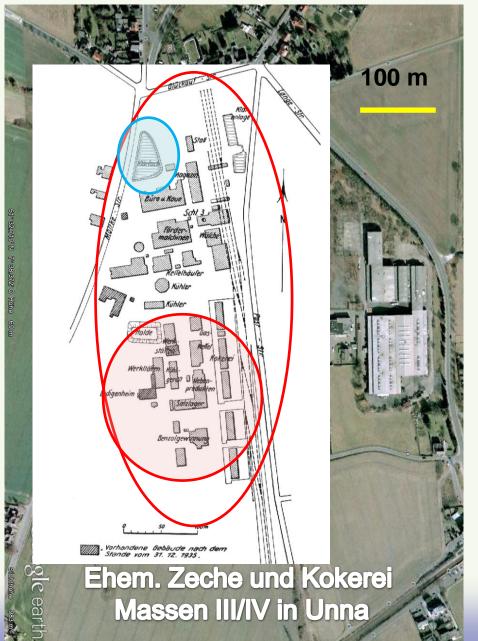


Redox, Sulfat, Nitrat, PAK15, Naphthalin, BTEX November 2010


Redox, Sulfat, Nitrat, PAK15, Naphthalin, BTEX Januar 2011

45 m

Isotopensignaturen des Sulfat-Schwefels und -Sauerstoffs



PAK- und BTEX-"Durchbrüche"

		PAK15 [μg/l]	Naphthalin [µg/l]	BTEX [µg/l]	Benzol [µg/l]
Geringfügigkeitsschwellenwerte der LAWA [6]		0,2	2	10	1
M22 (ca. 30 m abstromig Teerölphasenkörper)	Juli 1993	1,1	< 0,2	5	5
	März 1994	0,4	< 0,2	< 5	< 5
	Jan. 1998	<0,02	2,1	< 0,5	< 0,5
	Okt. 2004	0,03	< 0,02	< 1	< 1
	Sept. 2009	0,048	< 0,05	< 1	< 1
	Sept. 2010	< 0,02	< 0,02	7,7	7,7
	Nov. 2010	0,06	0,022	< 1	< 0,25
	Jan. 2011	0,02	0,02	< 1	< 0,25

Historie

1895 Abteufen Schacht III

1898 Errichtung der Kokerei

1914 Errichtung Benzolfabrik

1919 Errichtung weiterer Neben-

gewinnungsanlagen

1925 Stilllegung

1935 weitgehender Abbruch erfolgt

1935 – 1945: Nordteil: Nutzung durch die

Reichsluftwaffe

1950er Nutzung des Gesamtgeländes

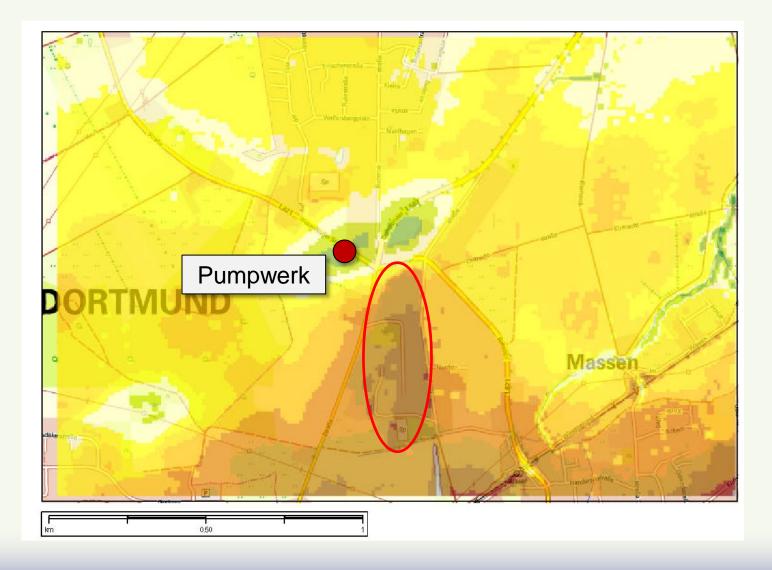
durch die Bundeswehr

1970er – heute: Gewerbliche Nutzung des

Südteils

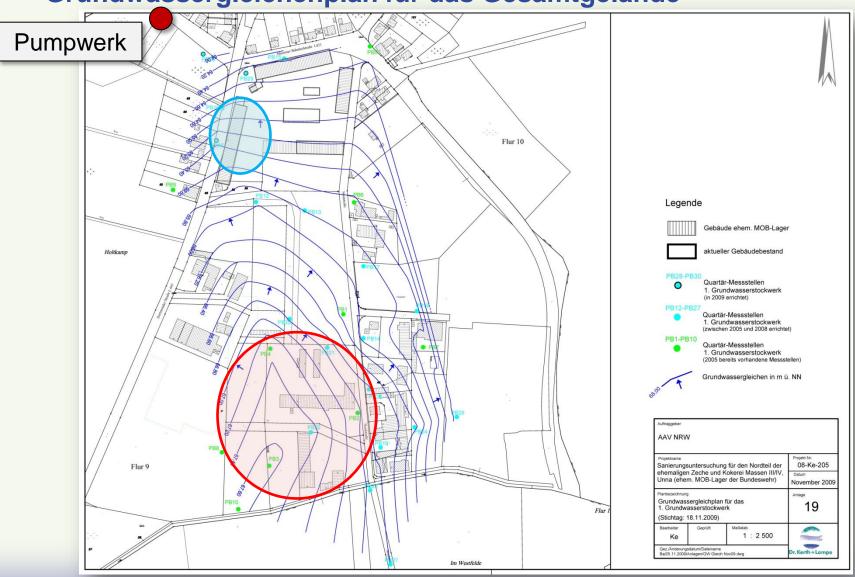
heute: Gewerbliche Nutzung des

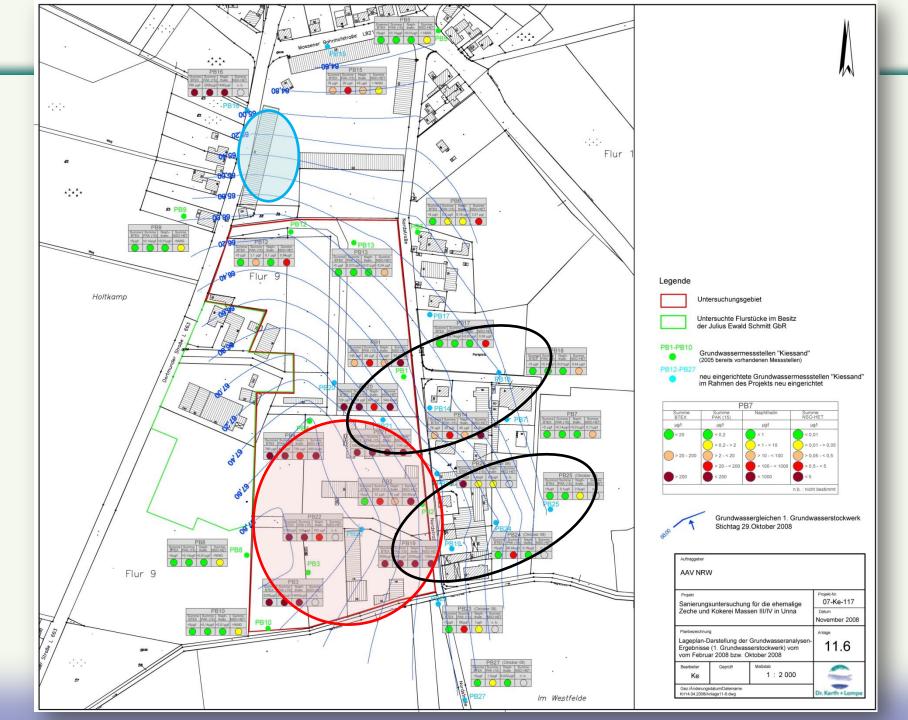
Gesamtgeländes


Untergrundaufbau

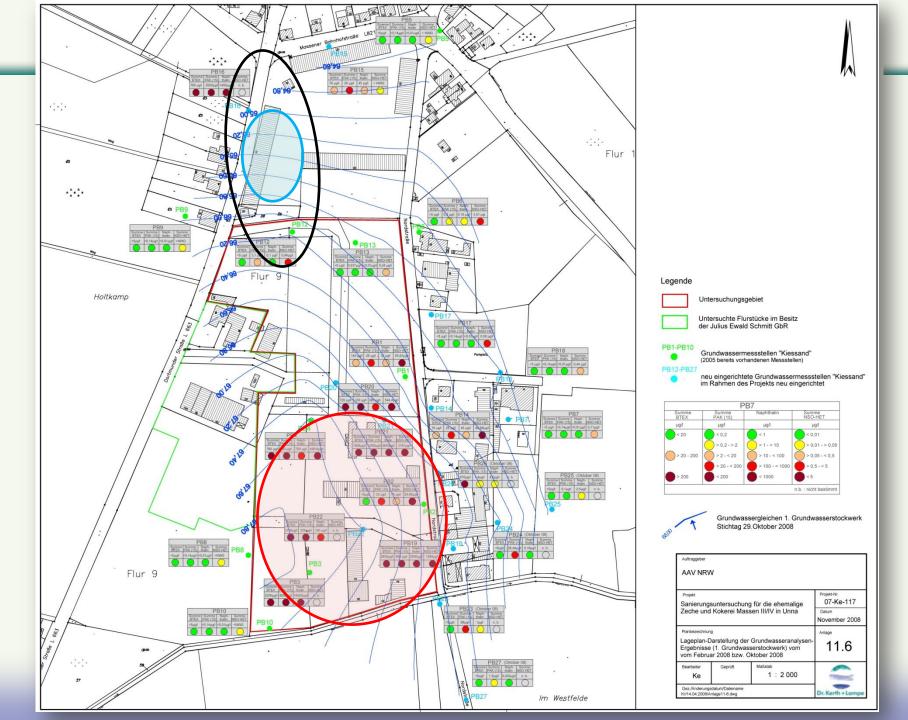
Geologische Einheit	Mächtigkeit [m]	Geologische Beschreibung
Auffüllung	1 - 4	Sandiger, schluffiger Kies mit Steinen, Material bestehend aus Bergematerial, Asche, Bauschutt, Boden
Löß / Lößlehm / Fließerde	bis 6	Schluff, feinsandig, zum Liegenden zu höherer Sand- und Kiesanteil
"Kiessand"	1 – 2, örtlich 3 – 4	Sandiger Kies mit wechselnden Schluffanteilen
Emschermergel bzw. verwitterte Kreideoberfläche	Wenige Meter	Toniger Schluff, kalkhaltig bis toniger Mergelstein
Kreide	ca. 95	Kalkmergelsteine

GW-Flurabstand: 1,5 – 5,0 m *Abstandsgeschwindigkeit:* 20 – 125 m/a




"Bergsenkungswanne" nördlich der ehem. Zeche u. Kokerei

Grundwassergleichenplan für das Gesamtgelände

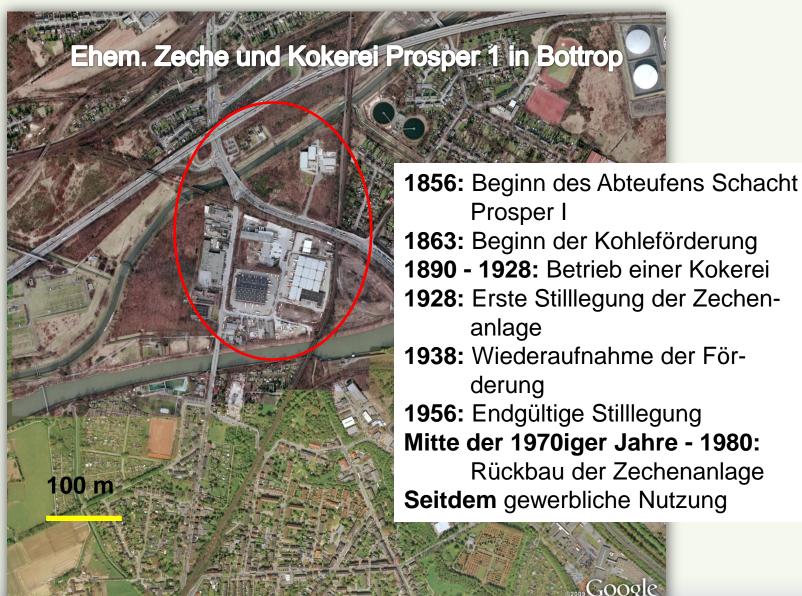


Konzentrationsprofile für kokereispezifische Schadstoffe entlang von Stromlinien (zentraler Teil des Geländes)

	PB21	PB14	PB18
Entfernung zu PB21	0	51	125
entlang Stromlinie [m]	_		
Fließdauer [Jahre]	0	0,4 - 2,6	1,0 – 6,25
Ammonium [mg/l]	120	53	11
Summe BTEX [µg/I]	1.800	76	<5
Naphthalin [µg/l]	2.600	45	<0,01
PAK 15 [µg/l]	1.000	29	<0,14
NSO-Het. [μg/l]	3.161	45	0,44

	PB19	PB24	PB25
Entfernung zu PB19 entlang Stromlinie [m]	0	51	110
Fließdauer [Jahre]	0	0,4-2,6	0,9 – 5,5
Ammonium [mg/l]	2,3	0,95	<0,05
Summe BTEX [µg/I]	2.600	<5	<5
Naphthalin [µg/l]	2.500	0,16	2,5
PAK 15 [µg/l]	800	26	2,6

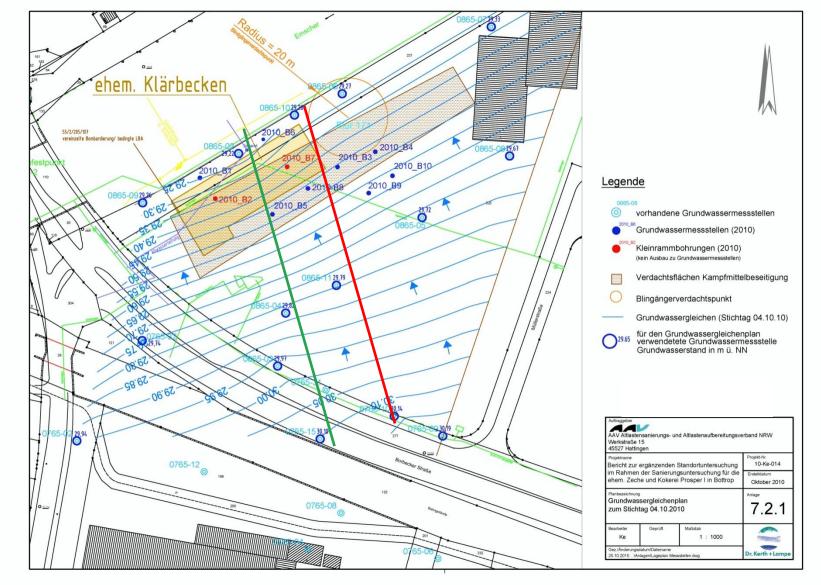
Konzentrationsprofil für kokereispezifische Schadstoffe entlang


von Stromlinien im Nordteil

Sehr starker
"Wieder-"
Anstieg, d. h.
Vorhandensein
eines weiteren
Schadensherdes!

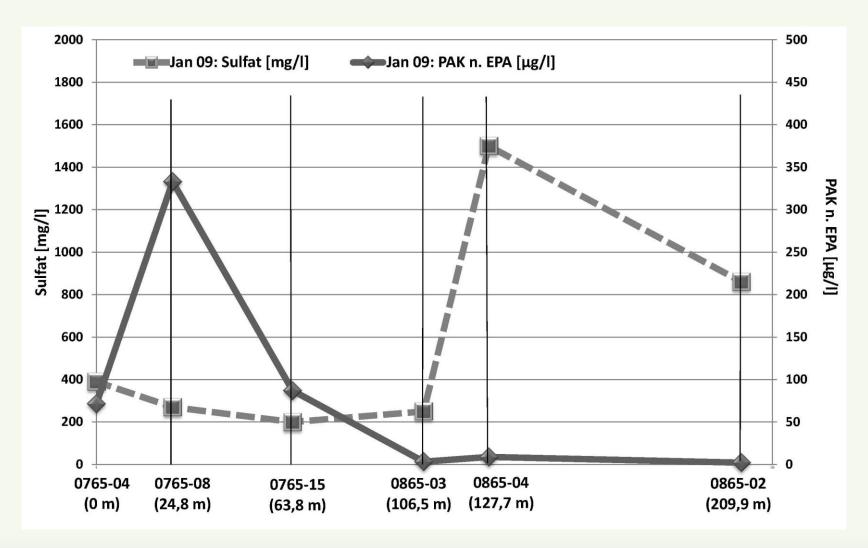
	PB12	PB16 \
Summe BTEX [µg/I]	< 5	760
Summe PAK 16 [µg/l]	3,2	3.400

Die Fließstrecke bis zur Wasserfassung des Pumpwerks reicht nicht für einen ausreichenden PAK-Abbau aus. Daher ist hier MNA nicht geeignet!

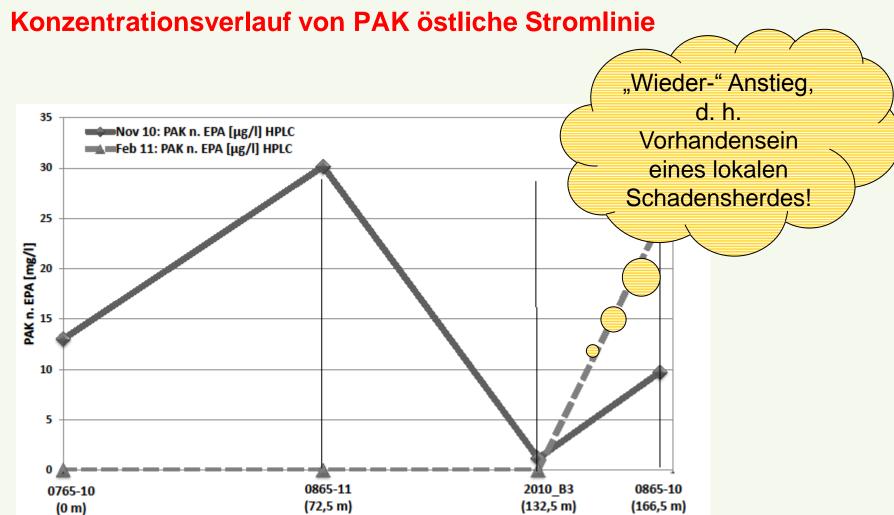

Untergrundaufbau

Geologische Einheit	Mächtigkeit	Geologische Beschreibung
Auffüllung	im Mittel 2 m, max. 6,2 m	Sandig-schluffiger Kies mit Steinen, Material bestehend aus Bergematerial, Asche, Schlacke, Bauschutt, Boden
Tal- und Auenlehm, teilweise auch Talsande (Schicht bei mächtigerer Auffüllung bzw. tiefen Eingriffen in den Boden z. T. fehlend)	wenige Dezimeter bis wenige Meter	Schwach tonige Schluffe, feinsandig, teilweise auch Mittelsand, feinsandig
Fein- und Mittelsande, z. T. auch Sande und sandige Kiese; mit Einschaltungen von Schluff	Einige Meter	Sandiger Kies mit wechselnden Schluffanteilen
Emschermergel bzw. verwitterte Kreideoberfläche	Wenige Meter	Toniger Schluff, kalkhaltig bis toniger Mergelstein

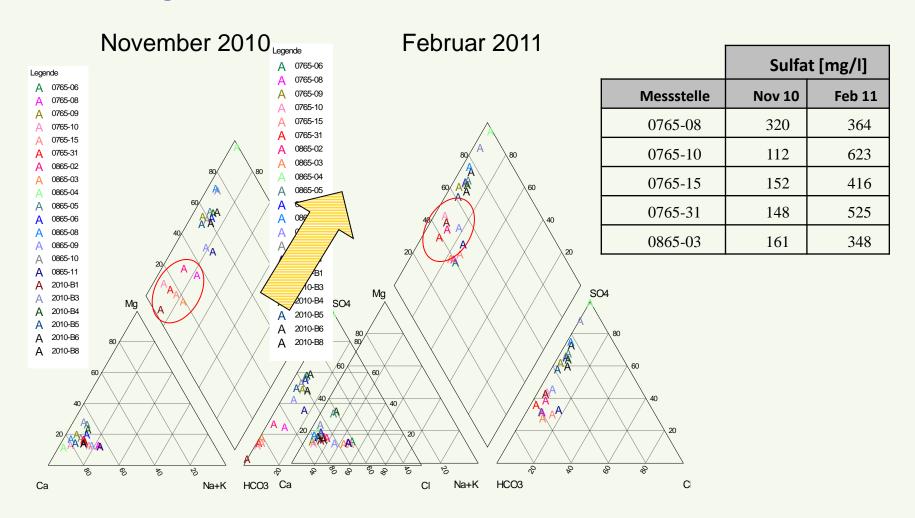
GW-Flurabstand: 6,5 – 10 m *Abstandsgeschwindigkeit:* 4 – 90 m/a



Grundwassergleichenplan vom 04.10.2010



Konzentrationsverlauf von PAK und Sulfat westliche Stromlinie



Sulfateinträge in das Grundwasser mit "frischem" Sickerwasser

Schlussfolgerungen zur Anwendung von MNA bei Teerölaltlasten (1)

- Grundvoraussetzung für MNA ist ein ausreichender "Reaktionsraum" im Abstrom ohne sensible Nutzung und hochrangige Schutzgüter. Im Ruhrgebiet, insbesondere in der Emscherzone, war bis in die jüngere Vergangenheit diese Voraussetzung i. d. R. erfüllt.
- Die fortschreitende Gewässerrenaturierung im Emscher- und Lippegebiet schafft aber Handlungsbedarf auch in Bezug auf den Parameter PAK und engt damit die Anwendbarkeit von MNA ein.
- In Gebieten mit erhöhten Hintergrundbelastungen, in denen potentielle oder tatsächliche Grundwassernutzer sowieso von Belastungen ausgehen, ist dabei MNA eher anwendbar als in Gebieten mit generell guter Grundwasserbeschaffenheit.
- Bei der "Bemessung" des "Reaktionsraums" sind die beobachteten zeitlich variablen "PAK-Durchbrüche" unbedingt mit zu berücksichtigen.

Schlussfolgerungen zur Anwendung von MNA bei Teerölaltlasten (2)

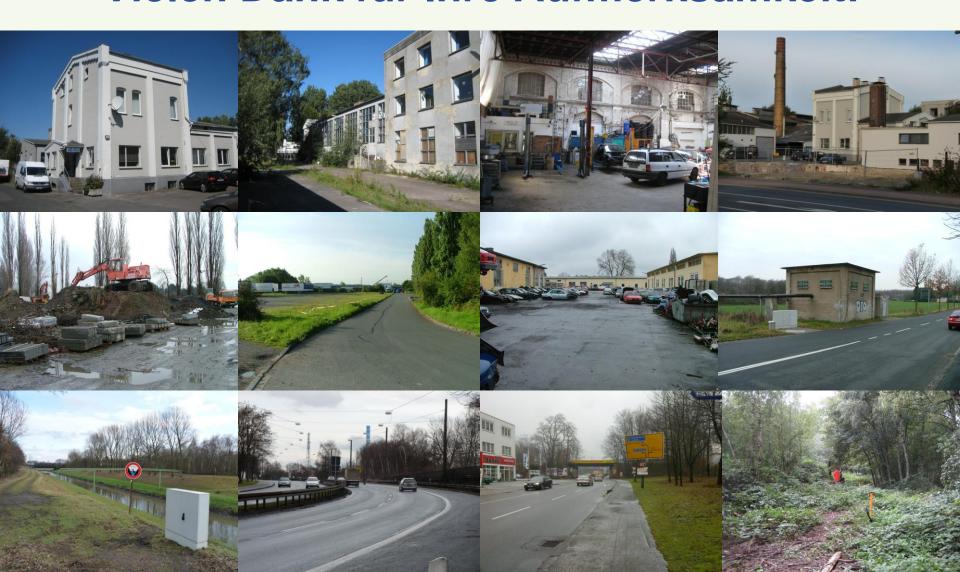
- Eine weitere zwingende Voraussetzung ist die Verfügbarkeit von Elektronenakzeptoren. Generell kann im Ruhrgebiet insbesondere bei Standorten der Montanindustrie durch die meist großflächigen Bergematerial- und Bauschutt-Auffüllungen von einer hohen Verfügbarkeit von Sulfat ausgegangen werden. Weiter steht vor allem auch dreiwertiges Eisen zur Verfügung. Offen ist aber, ob das Angebot an Elektronenakzeptoren bis zum weitgehenden Abbau der Schadstoffquelle (wofür Zeiträume von z. T. 1.000 Jahren und mehr anzunehmen sind!) ausreicht.
- Da das Angebot an Elektronenakzeptoren endlich ist und z. B. auch zunehmende Versiegelung zu einer verminderten Durchsickerung sulfathaltiger Auffüllungen führt, ist es sinnvoll, geeignete Reserveflächen für ENA-Maßnahmen von einer (dauerhaften) Bebauung freizuhalten.

Schlussfolgerungen zur Anwendung von MNA bei Teerölaltlasten (3)

- Vor dem Hintergrund der extrem langen Zeiträume bis zum Abbau der Teerölphasenkörper erscheint grundsätzlich eine Reduktion der im Untergrund vorhandenen Schadstoffmasse sinnvoll, weil dann zu hoffen ist, dass zumindest die Emissionsdauer abnimmt.
- Für die große Zahl von noch nicht oder nur begrenzt sanierten Teerölaltlasten im Ruhrgebiet, die bereits wieder einer meist gewerblichen Neunutzung zugeführt wurden, wird eine solche Dekontamination jedoch nur dann verhältnismäßig sein, wenn sehr hochrangige Schutzgüter betroffen sind. Von daher wird in vielen Fällen (nur) MNA als verhältnismäßige Strategie in Betracht kommen.

Schlussfolgerungen zur Anwendung von MNA bei Teerölaltlasten (4)

- Auf den großflächigen Montanindustriestandorten, sind häufig mehrere nicht miteinander in Verbindung stehende Teerölphasenkörper vorhanden. Dabei kann es sein, dass auf einem Standort für den einen Schadensherd MNA geeignet ist, für einen anderen, näher am Schutzgut liegenden Schadensherd jedoch nicht. Trotz ggf. gleicher Belastung im Boden und im Grundwasser kann dies dazu führen, dass der eine Eigentümer einer Teilfläche "nur" zu einer relativ günstigen MNA-"Maßnahme", der andere jedoch zu einer Dekontamination herangezogen wird. Dies kann im Einzelfall zu Akzeptanzproblemen führen.
- MNA-Standorte müssen bei den Überwachungsbehörden ständig "auf Wiedervorlage" liegen. Dabei muss das Monitoring so angelegt sein, dass relevante Veränderungen und insbesondere eine Abnahme der Schadstoffminderungsprozesse möglichst frühzeitig erkannt werden können.


Schlussfolgerungen zur Anwendung von MNA bei Teerölaltlasten (5)

- Den kurzen Beobachtungszeiträumen bei der Ableitung von MNA-Konzepten für Teerölaltlasten stehen sehr lange Zeiträume bis zum Abbau gegenüber. Dies führt zwangsläufig – auch bei Nutzung Rechner-gestützter Simulationen – zu hohen Prognose-Unsicherheiten. Daher ist zu erwarten, dass in Zukunft bei einigen MNA-"Maßnahmen" weitergehender Handlungsbedarf entstehen wird.
- MNA-"Maßnahmen" könnten demnach in vielen Fällen nur eine mittel- bis langfristige "Zwischenlösung" darstellen, die so lange "betrieben" werden können, wie die natürlichen Abbauprozesse ohne menschliches Zutun funktionieren.

MNA bei Teerölaltlasten nur "Zwischenlösung"?

Vielen Dank für Ihre Aufmerksamkeit!

